extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C4).1C22 = C23.19C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).1C2^2 | 128,12 |
(C23×C4).2C22 = C23.21C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).2C2^2 | 128,14 |
(C23×C4).3C22 = C24.17Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).3C2^2 | 128,165 |
(C23×C4).4C22 = C24.624C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).4C2^2 | 128,166 |
(C23×C4).5C22 = C24.625C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).5C2^2 | 128,167 |
(C23×C4).6C22 = C24.50D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).6C2^2 | 128,170 |
(C23×C4).7C22 = C24.5Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).7C2^2 | 128,171 |
(C23×C4).8C22 = C24.52D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).8C2^2 | 128,172 |
(C23×C4).9C22 = C24.631C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).9C2^2 | 128,173 |
(C23×C4).10C22 = C24.632C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).10C2^2 | 128,174 |
(C23×C4).11C22 = C24.633C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).11C2^2 | 128,175 |
(C23×C4).12C22 = C24.634C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).12C2^2 | 128,176 |
(C23×C4).13C22 = C24.635C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).13C2^2 | 128,177 |
(C23×C4).14C22 = C24.636C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).14C2^2 | 128,178 |
(C23×C4).15C22 = C2×C23⋊C8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).15C2^2 | 128,188 |
(C23×C4).16C22 = C2×C22.M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).16C2^2 | 128,189 |
(C23×C4).17C22 = C23.8M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).17C2^2 | 128,191 |
(C23×C4).18C22 = C4×C23⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).18C2^2 | 128,486 |
(C23×C4).19C22 = C24.22D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).19C2^2 | 128,599 |
(C23×C4).20C22 = C23.22M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).20C2^2 | 128,601 |
(C23×C4).21C22 = C24.26D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).21C2^2 | 128,622 |
(C23×C4).22C22 = C22⋊C4⋊4C8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).22C2^2 | 128,655 |
(C23×C4).23C22 = C23.9M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).23C2^2 | 128,656 |
(C23×C4).24C22 = C42.325D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).24C2^2 | 128,686 |
(C23×C4).25C22 = C42.109D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).25C2^2 | 128,687 |
(C23×C4).26C22 = C24.31D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).26C2^2 | 128,754 |
(C23×C4).27C22 = C24.180C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).27C2^2 | 128,762 |
(C23×C4).28C22 = C24.33D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).28C2^2 | 128,776 |
(C23×C4).29C22 = C24.182C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).29C2^2 | 128,794 |
(C23×C4).30C22 = C23⋊C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).30C2^2 | 128,1005 |
(C23×C4).31C22 = C24.524C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).31C2^2 | 128,1006 |
(C23×C4).32C22 = D4⋊4C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).32C2^2 | 128,1007 |
(C23×C4).33C22 = C2×C42⋊8C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).33C2^2 | 128,1013 |
(C23×C4).34C22 = C2×C23.63C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).34C2^2 | 128,1020 |
(C23×C4).35C22 = C2×C24.C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).35C2^2 | 128,1021 |
(C23×C4).36C22 = C2×C24.3C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).36C2^2 | 128,1024 |
(C23×C4).37C22 = C4×C4.4D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).37C2^2 | 128,1035 |
(C23×C4).38C22 = C4×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).38C2^2 | 128,1036 |
(C23×C4).39C22 = C4×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).39C2^2 | 128,1038 |
(C23×C4).40C22 = C24.542C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).40C2^2 | 128,1043 |
(C23×C4).41C22 = C23.194C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).41C2^2 | 128,1044 |
(C23×C4).42C22 = C24.91D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).42C2^2 | 128,1047 |
(C23×C4).43C22 = C23.199C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).43C2^2 | 128,1049 |
(C23×C4).44C22 = C24.547C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).44C2^2 | 128,1050 |
(C23×C4).45C22 = C24.195C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).45C2^2 | 128,1054 |
(C23×C4).46C22 = C24.198C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).46C2^2 | 128,1057 |
(C23×C4).47C22 = C42.160D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).47C2^2 | 128,1058 |
(C23×C4).48C22 = C42⋊14D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).48C2^2 | 128,1060 |
(C23×C4).49C22 = C23.211C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).49C2^2 | 128,1061 |
(C23×C4).50C22 = C24.203C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).50C2^2 | 128,1066 |
(C23×C4).51C22 = C24.205C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).51C2^2 | 128,1069 |
(C23×C4).52C22 = C24.549C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).52C2^2 | 128,1071 |
(C23×C4).53C22 = C23.231C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).53C2^2 | 128,1081 |
(C23×C4).54C22 = C24.212C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).54C2^2 | 128,1089 |
(C23×C4).55C22 = C24.558C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).55C2^2 | 128,1092 |
(C23×C4).56C22 = C24.215C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).56C2^2 | 128,1093 |
(C23×C4).57C22 = C24.219C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).57C2^2 | 128,1098 |
(C23×C4).58C22 = C24.220C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).58C2^2 | 128,1099 |
(C23×C4).59C22 = C24.221C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).59C2^2 | 128,1104 |
(C23×C4).60C22 = C23.255C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).60C2^2 | 128,1105 |
(C23×C4).61C22 = C24.223C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).61C2^2 | 128,1106 |
(C23×C4).62C22 = C23.261C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).62C2^2 | 128,1111 |
(C23×C4).63C22 = C23.262C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).63C2^2 | 128,1112 |
(C23×C4).64C22 = C24.230C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).64C2^2 | 128,1115 |
(C23×C4).65C22 = C2×C23.78C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).65C2^2 | 128,1119 |
(C23×C4).66C22 = C2×C23.4Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).66C2^2 | 128,1125 |
(C23×C4).67C22 = C2×C23.83C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).67C2^2 | 128,1126 |
(C23×C4).68C22 = C42⋊16D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).68C2^2 | 128,1129 |
(C23×C4).69C22 = C42.163D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).69C2^2 | 128,1130 |
(C23×C4).70C22 = C2×C23.84C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).70C2^2 | 128,1132 |
(C23×C4).71C22 = C23.301C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).71C2^2 | 128,1133 |
(C23×C4).72C22 = C24.563C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).72C2^2 | 128,1151 |
(C23×C4).73C22 = C24.254C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).73C2^2 | 128,1152 |
(C23×C4).74C22 = C23.322C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).74C2^2 | 128,1154 |
(C23×C4).75C22 = C24.269C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).75C2^2 | 128,1175 |
(C23×C4).76C22 = C23.344C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).76C2^2 | 128,1176 |
(C23×C4).77C22 = C23.345C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).77C2^2 | 128,1177 |
(C23×C4).78C22 = C24.271C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).78C2^2 | 128,1179 |
(C23×C4).79C22 = C23.349C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).79C2^2 | 128,1181 |
(C23×C4).80C22 = C23.350C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).80C2^2 | 128,1182 |
(C23×C4).81C22 = C24.276C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).81C2^2 | 128,1187 |
(C23×C4).82C22 = C23.356C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).82C2^2 | 128,1188 |
(C23×C4).83C22 = C24.278C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).83C2^2 | 128,1189 |
(C23×C4).84C22 = C24.279C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).84C2^2 | 128,1190 |
(C23×C4).85C22 = C23.359C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).85C2^2 | 128,1191 |
(C23×C4).86C22 = C23.360C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).86C2^2 | 128,1192 |
(C23×C4).87C22 = C24.282C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).87C2^2 | 128,1193 |
(C23×C4).88C22 = C24.283C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).88C2^2 | 128,1195 |
(C23×C4).89C22 = C23.364C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).89C2^2 | 128,1196 |
(C23×C4).90C22 = C24.286C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).90C2^2 | 128,1198 |
(C23×C4).91C22 = C23.367C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).91C2^2 | 128,1199 |
(C23×C4).92C22 = C23.368C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).92C2^2 | 128,1200 |
(C23×C4).93C22 = C23.372C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).93C2^2 | 128,1204 |
(C23×C4).94C22 = C23.380C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).94C2^2 | 128,1212 |
(C23×C4).95C22 = C24.96D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).95C2^2 | 128,1215 |
(C23×C4).96C22 = C23.388C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).96C2^2 | 128,1220 |
(C23×C4).97C22 = C24.577C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).97C2^2 | 128,1225 |
(C23×C4).98C22 = C23.401C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).98C2^2 | 128,1233 |
(C23×C4).99C22 = C23.402C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).99C2^2 | 128,1234 |
(C23×C4).100C22 = C24.579C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).100C2^2 | 128,1235 |
(C23×C4).101C22 = C23.404C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).101C2^2 | 128,1236 |
(C23×C4).102C22 = C23.405C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).102C2^2 | 128,1237 |
(C23×C4).103C22 = C23.410C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).103C2^2 | 128,1242 |
(C23×C4).104C22 = C24.309C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).104C2^2 | 128,1247 |
(C23×C4).105C22 = C23.416C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).105C2^2 | 128,1248 |
(C23×C4).106C22 = C23.417C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).106C2^2 | 128,1249 |
(C23×C4).107C22 = C23.418C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).107C2^2 | 128,1250 |
(C23×C4).108C22 = C24.313C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).108C2^2 | 128,1255 |
(C23×C4).109C22 = C23.426C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).109C2^2 | 128,1258 |
(C23×C4).110C22 = C24.315C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).110C2^2 | 128,1259 |
(C23×C4).111C22 = C42⋊17D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).111C2^2 | 128,1267 |
(C23×C4).112C22 = C23.443C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).112C2^2 | 128,1275 |
(C23×C4).113C22 = C42⋊21D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).113C2^2 | 128,1276 |
(C23×C4).114C22 = C24.327C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).114C2^2 | 128,1286 |
(C23×C4).115C22 = C23.457C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).115C2^2 | 128,1289 |
(C23×C4).116C22 = C23.458C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).116C2^2 | 128,1290 |
(C23×C4).117C22 = C24.331C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).117C2^2 | 128,1291 |
(C23×C4).118C22 = C42.175D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).118C2^2 | 128,1298 |
(C23×C4).119C22 = C23.472C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).119C2^2 | 128,1304 |
(C23×C4).120C22 = C23.473C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).120C2^2 | 128,1305 |
(C23×C4).121C22 = C24.339C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).121C2^2 | 128,1307 |
(C23×C4).122C22 = C24.340C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).122C2^2 | 128,1308 |
(C23×C4).123C22 = C23.478C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).123C2^2 | 128,1310 |
(C23×C4).124C22 = C23.479C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).124C2^2 | 128,1311 |
(C23×C4).125C22 = C42.178D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).125C2^2 | 128,1312 |
(C23×C4).126C22 = C24.345C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).126C2^2 | 128,1319 |
(C23×C4).127C22 = C24.346C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).127C2^2 | 128,1321 |
(C23×C4).128C22 = C24.347C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).128C2^2 | 128,1327 |
(C23×C4).129C22 = C24.348C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).129C2^2 | 128,1329 |
(C23×C4).130C22 = C42⋊22D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).130C2^2 | 128,1330 |
(C23×C4).131C22 = C23.500C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).131C2^2 | 128,1332 |
(C23×C4).132C22 = C23.502C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).132C2^2 | 128,1334 |
(C23×C4).133C22 = C42⋊24D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).133C2^2 | 128,1335 |
(C23×C4).134C22 = C24.355C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).134C2^2 | 128,1339 |
(C23×C4).135C22 = C23.508C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).135C2^2 | 128,1340 |
(C23×C4).136C22 = C24.97D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).136C2^2 | 128,1354 |
(C23×C4).137C22 = C42⋊29D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).137C2^2 | 128,1363 |
(C23×C4).138C22 = C42.190D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).138C2^2 | 128,1365 |
(C23×C4).139C22 = C42⋊30D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).139C2^2 | 128,1368 |
(C23×C4).140C22 = C24.592C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).140C2^2 | 128,1371 |
(C23×C4).141C22 = C23.543C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).141C2^2 | 128,1375 |
(C23×C4).142C22 = C23.546C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).142C2^2 | 128,1378 |
(C23×C4).143C22 = C23.548C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).143C2^2 | 128,1380 |
(C23×C4).144C22 = C24.375C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).144C2^2 | 128,1381 |
(C23×C4).145C22 = C24.376C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).145C2^2 | 128,1384 |
(C23×C4).146C22 = C23.553C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).146C2^2 | 128,1385 |
(C23×C4).147C22 = C24.395C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).147C2^2 | 128,1420 |
(C23×C4).148C22 = C23.591C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).148C2^2 | 128,1423 |
(C23×C4).149C22 = C23.593C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).149C2^2 | 128,1425 |
(C23×C4).150C22 = C24.407C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).150C2^2 | 128,1433 |
(C23×C4).151C22 = C23.603C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).151C2^2 | 128,1435 |
(C23×C4).152C22 = C23.606C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).152C2^2 | 128,1438 |
(C23×C4).153C22 = C24.411C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).153C2^2 | 128,1441 |
(C23×C4).154C22 = C24.412C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).154C2^2 | 128,1442 |
(C23×C4).155C22 = C23.612C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).155C2^2 | 128,1444 |
(C23×C4).156C22 = C23.618C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).156C2^2 | 128,1450 |
(C23×C4).157C22 = C23.624C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).157C2^2 | 128,1456 |
(C23×C4).158C22 = C23.643C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).158C2^2 | 128,1475 |
(C23×C4).159C22 = C24.432C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).159C2^2 | 128,1478 |
(C23×C4).160C22 = C24.434C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).160C2^2 | 128,1480 |
(C23×C4).161C22 = C23.649C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).161C2^2 | 128,1481 |
(C23×C4).162C22 = C23.651C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).162C2^2 | 128,1483 |
(C23×C4).163C22 = C23.652C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).163C2^2 | 128,1484 |
(C23×C4).164C22 = C24.437C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).164C2^2 | 128,1485 |
(C23×C4).165C22 = C24.438C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).165C2^2 | 128,1489 |
(C23×C4).166C22 = C23.660C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).166C2^2 | 128,1492 |
(C23×C4).167C22 = C24.440C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).167C2^2 | 128,1493 |
(C23×C4).168C22 = C23.663C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).168C2^2 | 128,1495 |
(C23×C4).169C22 = C23.664C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).169C2^2 | 128,1496 |
(C23×C4).170C22 = C24.443C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).170C2^2 | 128,1497 |
(C23×C4).171C22 = C23.671C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).171C2^2 | 128,1503 |
(C23×C4).172C22 = C23.678C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).172C2^2 | 128,1510 |
(C23×C4).173C22 = C24.448C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).173C2^2 | 128,1512 |
(C23×C4).174C22 = C23.682C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).174C2^2 | 128,1514 |
(C23×C4).175C22 = C24.454C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).175C2^2 | 128,1522 |
(C23×C4).176C22 = C23.696C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).176C2^2 | 128,1528 |
(C23×C4).177C22 = C23.697C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).177C2^2 | 128,1529 |
(C23×C4).178C22 = C24.456C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).178C2^2 | 128,1536 |
(C23×C4).179C22 = C23.707C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).179C2^2 | 128,1539 |
(C23×C4).180C22 = C23.724C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).180C2^2 | 128,1556 |
(C23×C4).181C22 = C23.725C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).181C2^2 | 128,1557 |
(C23×C4).182C22 = C23.726C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).182C2^2 | 128,1558 |
(C23×C4).183C22 = C23.727C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).183C2^2 | 128,1559 |
(C23×C4).184C22 = C23.734C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).184C2^2 | 128,1566 |
(C23×C4).185C22 = C23.735C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).185C2^2 | 128,1567 |
(C23×C4).186C22 = C42.691C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).186C2^2 | 128,1704 |
(C23×C4).187C22 = C2×C23.33C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).187C2^2 | 128,2159 |
(C23×C4).188C22 = C2×C22.53C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).188C2^2 | 128,2211 |
(C23×C4).189C22 = C24.46D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).189C2^2 | 128,16 |
(C23×C4).190C22 = C23.8D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).190C2^2 | 128,21 |
(C23×C4).191C22 = C24.2Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).191C2^2 | 128,25 |
(C23×C4).192C22 = C23.30D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).192C2^2 | 128,26 |
(C23×C4).193C22 = C24.48D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).193C2^2 | 128,29 |
(C23×C4).194C22 = C24.3Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).194C2^2 | 128,30 |
(C23×C4).195C22 = C23.C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).195C2^2 | 128,37 |
(C23×C4).196C22 = C23.8C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).196C2^2 | 128,38 |
(C23×C4).197C22 = C25.3C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).197C2^2 | 128,194 |
(C23×C4).198C22 = (C2×C4)⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).198C2^2 | 128,195 |
(C23×C4).199C22 = C23⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).199C2^2 | 128,197 |
(C23×C4).200C22 = C23⋊C8⋊C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).200C2^2 | 128,200 |
(C23×C4).201C22 = C24.(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).201C2^2 | 128,203 |
(C23×C4).202C22 = C24.45(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).202C2^2 | 128,204 |
(C23×C4).203C22 = C2×C22.SD16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).203C2^2 | 128,230 |
(C23×C4).204C22 = C2×C23.31D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).204C2^2 | 128,231 |
(C23×C4).205C22 = C24.53D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).205C2^2 | 128,233 |
(C23×C4).206C22 = C24.150D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).206C2^2 | 128,236 |
(C23×C4).207C22 = C24.54D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).207C2^2 | 128,239 |
(C23×C4).208C22 = C24.55D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).208C2^2 | 128,240 |
(C23×C4).209C22 = C24.56D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).209C2^2 | 128,242 |
(C23×C4).210C22 = C24.57D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).210C2^2 | 128,243 |
(C23×C4).211C22 = C24.58D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).211C2^2 | 128,245 |
(C23×C4).212C22 = C24.59D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).212C2^2 | 128,248 |
(C23×C4).213C22 = C24.60D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).213C2^2 | 128,251 |
(C23×C4).214C22 = C24.61D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).214C2^2 | 128,252 |
(C23×C4).215C22 = C2×C4.9C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).215C2^2 | 128,462 |
(C23×C4).216C22 = C2×C4.10C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).216C2^2 | 128,463 |
(C23×C4).217C22 = C24.63D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).217C2^2 | 128,465 |
(C23×C4).218C22 = C24.152D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).218C2^2 | 128,468 |
(C23×C4).219C22 = C24.7Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).219C2^2 | 128,470 |
(C23×C4).220C22 = C24.162C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).220C2^2 | 128,472 |
(C23×C4).221C22 = C2×C22.C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).221C2^2 | 128,473 |
(C23×C4).222C22 = C23.15C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).222C2^2 | 128,474 |
(C23×C4).223C22 = C2×M4(2)⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).223C2^2 | 128,475 |
(C23×C4).224C22 = C42.379D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).224C2^2 | 128,482 |
(C23×C4).225C22 = C23.17C42 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).225C2^2 | 128,485 |
(C23×C4).226C22 = C24.51(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).226C2^2 | 128,512 |
(C23×C4).227C22 = C24.165C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).227C2^2 | 128,514 |
(C23×C4).228C22 = C25.C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).228C2^2 | 128,515 |
(C23×C4).229C22 = C4.C22≀C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).229C2^2 | 128,516 |
(C23×C4).230C22 = (C23×C4).C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).230C2^2 | 128,517 |
(C23×C4).231C22 = C23.35D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).231C2^2 | 128,518 |
(C23×C4).232C22 = C24.155D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).232C2^2 | 128,519 |
(C23×C4).233C22 = C24.65D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).233C2^2 | 128,520 |
(C23×C4).234C22 = C24.66D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).234C2^2 | 128,521 |
(C23×C4).235C22 = C42.95D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).235C2^2 | 128,530 |
(C23×C4).236C22 = C24.167C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).236C2^2 | 128,531 |
(C23×C4).237C22 = C24.67D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).237C2^2 | 128,541 |
(C23×C4).238C22 = C24.9Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).238C2^2 | 128,543 |
(C23×C4).239C22 = C24.53(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).239C2^2 | 128,550 |
(C23×C4).240C22 = C24.169C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).240C2^2 | 128,552 |
(C23×C4).241C22 = (C22×C4).275D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).241C2^2 | 128,553 |
(C23×C4).242C22 = (C22×C4).276D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).242C2^2 | 128,554 |
(C23×C4).243C22 = C23.36D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).243C2^2 | 128,555 |
(C23×C4).244C22 = C24.157D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).244C2^2 | 128,556 |
(C23×C4).245C22 = C24.69D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).245C2^2 | 128,557 |
(C23×C4).246C22 = C24.70D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).246C2^2 | 128,558 |
(C23×C4).247C22 = (C2×C8).195D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).247C2^2 | 128,583 |
(C23×C4).248C22 = C23.37D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).248C2^2 | 128,584 |
(C23×C4).249C22 = C24.159D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).249C2^2 | 128,585 |
(C23×C4).250C22 = C24.71D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).250C2^2 | 128,586 |
(C23×C4).251C22 = C24.10Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).251C2^2 | 128,587 |
(C23×C4).252C22 = C23⋊2M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).252C2^2 | 128,602 |
(C23×C4).253C22 = C24.72D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).253C2^2 | 128,603 |
(C23×C4).254C22 = C24.160D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).254C2^2 | 128,604 |
(C23×C4).255C22 = C24.73D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).255C2^2 | 128,605 |
(C23×C4).256C22 = C23.38D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).256C2^2 | 128,606 |
(C23×C4).257C22 = C24.74D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).257C2^2 | 128,607 |
(C23×C4).258C22 = (C2×C8)⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | 4 | (C2^3xC4).258C2^2 | 128,623 |
(C23×C4).259C22 = C24.75D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).259C2^2 | 128,626 |
(C23×C4).260C22 = C24.76D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).260C2^2 | 128,627 |
(C23×C4).261C22 = C42⋊7D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).261C2^2 | 128,629 |
(C23×C4).262C22 = C24.174C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).262C2^2 | 128,631 |
(C23×C4).263C22 = M4(2)⋊20D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).263C2^2 | 128,632 |
(C23×C4).264C22 = M4(2).45D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).264C2^2 | 128,633 |
(C23×C4).265C22 = C24.175C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).265C2^2 | 128,696 |
(C23×C4).266C22 = C24.176C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).266C2^2 | 128,728 |
(C23×C4).267C22 = C23⋊2D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).267C2^2 | 128,731 |
(C23×C4).268C22 = C23⋊3SD16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).268C2^2 | 128,732 |
(C23×C4).269C22 = C23⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).269C2^2 | 128,733 |
(C23×C4).270C22 = C42⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | 4 | (C2^3xC4).270C2^2 | 128,742 |
(C23×C4).271C22 = C24.83D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).271C2^2 | 128,765 |
(C23×C4).272C22 = C24.84D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).272C2^2 | 128,766 |
(C23×C4).273C22 = C24.85D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).273C2^2 | 128,767 |
(C23×C4).274C22 = C24.86D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).274C2^2 | 128,768 |
(C23×C4).275C22 = C23.12D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).275C2^2 | 128,807 |
(C23×C4).276C22 = C24.88D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).276C2^2 | 128,808 |
(C23×C4).277C22 = C24.89D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).277C2^2 | 128,809 |
(C23×C4).278C22 = C24.11Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | 4 | (C2^3xC4).278C2^2 | 128,823 |
(C23×C4).279C22 = C2×C23.8Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).279C2^2 | 128,1018 |
(C23×C4).280C22 = C2×C23.65C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).280C2^2 | 128,1023 |
(C23×C4).281C22 = C43⋊9C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).281C2^2 | 128,1025 |
(C23×C4).282C22 = C2×C23.67C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).282C2^2 | 128,1026 |
(C23×C4).283C22 = C23.179C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).283C2^2 | 128,1029 |
(C23×C4).284C22 = C43⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).284C2^2 | 128,1030 |
(C23×C4).285C22 = C23.191C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).285C2^2 | 128,1041 |
(C23×C4).286C22 = C23.192C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).286C2^2 | 128,1042 |
(C23×C4).287C22 = C23.195C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).287C2^2 | 128,1045 |
(C23×C4).288C22 = C24.192C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).288C2^2 | 128,1046 |
(C23×C4).289C22 = C24.545C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).289C2^2 | 128,1048 |
(C23×C4).290C22 = C23.201C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).290C2^2 | 128,1051 |
(C23×C4).291C22 = C42.159D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).291C2^2 | 128,1055 |
(C23×C4).292C22 = C42⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).292C2^2 | 128,1056 |
(C23×C4).293C22 = C23.214C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).293C2^2 | 128,1064 |
(C23×C4).294C22 = C23.215C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).294C2^2 | 128,1065 |
(C23×C4).295C22 = C24.204C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).295C2^2 | 128,1067 |
(C23×C4).296C22 = Q8×C22⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).296C2^2 | 128,1072 |
(C23×C4).297C22 = C23.223C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).297C2^2 | 128,1073 |
(C23×C4).298C22 = C23.224C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).298C2^2 | 128,1074 |
(C23×C4).299C22 = C23.225C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).299C2^2 | 128,1075 |
(C23×C4).300C22 = C23.226C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).300C2^2 | 128,1076 |
(C23×C4).301C22 = C23.227C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).301C2^2 | 128,1077 |
(C23×C4).302C22 = C24.208C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).302C2^2 | 128,1078 |
(C23×C4).303C22 = C23.229C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).303C2^2 | 128,1079 |
(C23×C4).304C22 = D4×C4⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).304C2^2 | 128,1080 |
(C23×C4).305C22 = C23.234C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).305C2^2 | 128,1084 |
(C23×C4).306C22 = C23.235C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).306C2^2 | 128,1085 |
(C23×C4).307C22 = C23.236C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).307C2^2 | 128,1086 |
(C23×C4).308C22 = C23.241C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).308C2^2 | 128,1091 |
(C23×C4).309C22 = C23.244C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).309C2^2 | 128,1094 |
(C23×C4).310C22 = C24.217C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).310C2^2 | 128,1095 |
(C23×C4).311C22 = C24.218C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).311C2^2 | 128,1096 |
(C23×C4).312C22 = C23.250C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).312C2^2 | 128,1100 |
(C23×C4).313C22 = C24.225C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).313C2^2 | 128,1108 |
(C23×C4).314C22 = C23.259C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).314C2^2 | 128,1109 |
(C23×C4).315C22 = C24.227C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).315C2^2 | 128,1110 |
(C23×C4).316C22 = C2×C23⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).316C2^2 | 128,1116 |
(C23×C4).317C22 = C2×C23⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).317C2^2 | 128,1117 |
(C23×C4).318C22 = C2×C23.10D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).318C2^2 | 128,1118 |
(C23×C4).319C22 = C23.288C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).319C2^2 | 128,1120 |
(C23×C4).320C22 = C2×C23.Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).320C2^2 | 128,1121 |
(C23×C4).321C22 = C2×C23.11D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).321C2^2 | 128,1122 |
(C23×C4).322C22 = C2×C23.81C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).322C2^2 | 128,1123 |
(C23×C4).323C22 = C42⋊15D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).323C2^2 | 128,1124 |
(C23×C4).324C22 = C23.295C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).324C2^2 | 128,1127 |
(C23×C4).325C22 = C42.162D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).325C2^2 | 128,1128 |
(C23×C4).326C22 = C24.243C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).326C2^2 | 128,1138 |
(C23×C4).327C22 = C24.244C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).327C2^2 | 128,1139 |
(C23×C4).328C22 = C23.309C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).328C2^2 | 128,1141 |
(C23×C4).329C22 = C23.311C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).329C2^2 | 128,1143 |
(C23×C4).330C22 = C24.95D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).330C2^2 | 128,1144 |
(C23×C4).331C22 = C23.313C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).331C2^2 | 128,1145 |
(C23×C4).332C22 = C24.249C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).332C2^2 | 128,1146 |
(C23×C4).333C22 = C23.315C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).333C2^2 | 128,1147 |
(C23×C4).334C22 = C23.316C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).334C2^2 | 128,1148 |
(C23×C4).335C22 = C24.252C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).335C2^2 | 128,1149 |
(C23×C4).336C22 = C23.321C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).336C2^2 | 128,1153 |
(C23×C4).337C22 = C23.323C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).337C2^2 | 128,1155 |
(C23×C4).338C22 = C24.258C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).338C2^2 | 128,1157 |
(C23×C4).339C22 = C24.259C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).339C2^2 | 128,1158 |
(C23×C4).340C22 = C23.327C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).340C2^2 | 128,1159 |
(C23×C4).341C22 = C23.328C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).341C2^2 | 128,1160 |
(C23×C4).342C22 = C23.329C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).342C2^2 | 128,1161 |
(C23×C4).343C22 = C24.262C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).343C2^2 | 128,1162 |
(C23×C4).344C22 = C24.263C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).344C2^2 | 128,1163 |
(C23×C4).345C22 = C24.264C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).345C2^2 | 128,1164 |
(C23×C4).346C22 = C23.333C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).346C2^2 | 128,1165 |
(C23×C4).347C22 = C23.334C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).347C2^2 | 128,1166 |
(C23×C4).348C22 = C23.335C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).348C2^2 | 128,1167 |
(C23×C4).349C22 = C24.565C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).349C2^2 | 128,1168 |
(C23×C4).350C22 = C24⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).350C2^2 | 128,1169 |
(C23×C4).351C22 = C24.567C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).351C2^2 | 128,1170 |
(C23×C4).352C22 = C24.267C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).352C2^2 | 128,1171 |
(C23×C4).353C22 = C24.568C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).353C2^2 | 128,1172 |
(C23×C4).354C22 = C24.268C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).354C2^2 | 128,1173 |
(C23×C4).355C22 = C24.569C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).355C2^2 | 128,1174 |
(C23×C4).356C22 = C23.352C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).356C2^2 | 128,1184 |
(C23×C4).357C22 = C23.354C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).357C2^2 | 128,1186 |
(C23×C4).358C22 = C24.285C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).358C2^2 | 128,1197 |
(C23×C4).359C22 = C24.289C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).359C2^2 | 128,1202 |
(C23×C4).360C22 = C24.290C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).360C2^2 | 128,1203 |
(C23×C4).361C22 = C24.572C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).361C2^2 | 128,1205 |
(C23×C4).362C22 = C23.374C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).362C2^2 | 128,1206 |
(C23×C4).363C22 = C23.375C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).363C2^2 | 128,1207 |
(C23×C4).364C22 = C24.293C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).364C2^2 | 128,1208 |
(C23×C4).365C22 = C23.377C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).365C2^2 | 128,1209 |
(C23×C4).366C22 = C24.295C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).366C2^2 | 128,1210 |
(C23×C4).367C22 = C23.379C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).367C2^2 | 128,1211 |
(C23×C4).368C22 = C24.573C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).368C2^2 | 128,1213 |
(C23×C4).369C22 = C23.382C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).369C2^2 | 128,1214 |
(C23×C4).370C22 = C24.576C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).370C2^2 | 128,1216 |
(C23×C4).371C22 = C23.385C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).371C2^2 | 128,1217 |
(C23×C4).372C22 = C24.299C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).372C2^2 | 128,1218 |
(C23×C4).373C22 = C24.300C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).373C2^2 | 128,1219 |
(C23×C4).374C22 = C24.301C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).374C2^2 | 128,1221 |
(C23×C4).375C22 = C23.390C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).375C2^2 | 128,1222 |
(C23×C4).376C22 = C23.391C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).376C2^2 | 128,1223 |
(C23×C4).377C22 = C23.392C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).377C2^2 | 128,1224 |
(C23×C4).378C22 = C24.304C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).378C2^2 | 128,1226 |
(C23×C4).379C22 = C23.395C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).379C2^2 | 128,1227 |
(C23×C4).380C22 = C23.396C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).380C2^2 | 128,1228 |
(C23×C4).381C22 = C23.397C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).381C2^2 | 128,1229 |
(C23×C4).382C22 = C23.398C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).382C2^2 | 128,1230 |
(C23×C4).383C22 = C24.308C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).383C2^2 | 128,1231 |
(C23×C4).384C22 = C23.400C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).384C2^2 | 128,1232 |
(C23×C4).385C22 = C24.311C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).385C2^2 | 128,1253 |
(C23×C4).386C22 = C23.422C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).386C2^2 | 128,1254 |
(C23×C4).387C22 = C23.430C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).387C2^2 | 128,1262 |
(C23×C4).388C22 = C23.431C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).388C2^2 | 128,1263 |
(C23×C4).389C22 = C42.165D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).389C2^2 | 128,1268 |
(C23×C4).390C22 = C42⋊18D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).390C2^2 | 128,1269 |
(C23×C4).391C22 = C42.166D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).391C2^2 | 128,1270 |
(C23×C4).392C22 = C23.439C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).392C2^2 | 128,1271 |
(C23×C4).393C22 = C42⋊19D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).393C2^2 | 128,1272 |
(C23×C4).394C22 = C42⋊20D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).394C2^2 | 128,1273 |
(C23×C4).395C22 = C42.167D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).395C2^2 | 128,1274 |
(C23×C4).396C22 = C42.170D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).396C2^2 | 128,1279 |
(C23×C4).397C22 = C23.449C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).397C2^2 | 128,1281 |
(C23×C4).398C22 = C24.326C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).398C2^2 | 128,1285 |
(C23×C4).399C22 = C23.455C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).399C2^2 | 128,1287 |
(C23×C4).400C22 = C23.456C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).400C2^2 | 128,1288 |
(C23×C4).401C22 = C24.332C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).401C2^2 | 128,1292 |
(C23×C4).402C22 = C23.461C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).402C2^2 | 128,1293 |
(C23×C4).403C22 = C42.172D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).403C2^2 | 128,1294 |
(C23×C4).404C22 = C42.173D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).404C2^2 | 128,1295 |
(C23×C4).405C22 = C24.583C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).405C2^2 | 128,1296 |
(C23×C4).406C22 = C24.584C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).406C2^2 | 128,1301 |
(C23×C4).407C22 = C24.338C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).407C2^2 | 128,1306 |
(C23×C4).408C22 = C24.341C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).408C2^2 | 128,1309 |
(C23×C4).409C22 = C23.483C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).409C2^2 | 128,1315 |
(C23×C4).410C22 = C23.491C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).410C2^2 | 128,1323 |
(C23×C4).411C22 = C42.183D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).411C2^2 | 128,1331 |
(C23×C4).412C22 = C42⋊23D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).412C2^2 | 128,1333 |
(C23×C4).413C22 = C42⋊25D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).413C2^2 | 128,1341 |
(C23×C4).414C22 = C42⋊26D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).414C2^2 | 128,1342 |
(C23×C4).415C22 = C42.185D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).415C2^2 | 128,1343 |
(C23×C4).416C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).416C2^2 | 128,1345 |
(C23×C4).417C22 = C23.514C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).417C2^2 | 128,1346 |
(C23×C4).418C22 = C24.360C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).418C2^2 | 128,1347 |
(C23×C4).419C22 = C24.361C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).419C2^2 | 128,1348 |
(C23×C4).420C22 = C24⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).420C2^2 | 128,1349 |
(C23×C4).421C22 = C24.587C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).421C2^2 | 128,1350 |
(C23×C4).422C22 = C42⋊27D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).422C2^2 | 128,1351 |
(C23×C4).423C22 = C42⋊28D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).423C2^2 | 128,1352 |
(C23×C4).424C22 = C42.186D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).424C2^2 | 128,1353 |
(C23×C4).425C22 = C24.589C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).425C2^2 | 128,1355 |
(C23×C4).426C22 = C23.524C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).426C2^2 | 128,1356 |
(C23×C4).427C22 = C23.525C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).427C2^2 | 128,1357 |
(C23×C4).428C22 = C24⋊5Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).428C2^2 | 128,1358 |
(C23×C4).429C22 = C23.527C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).429C2^2 | 128,1359 |
(C23×C4).430C22 = C42.187D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).430C2^2 | 128,1360 |
(C23×C4).431C22 = C42.188D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).431C2^2 | 128,1361 |
(C23×C4).432C22 = C23.530C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).432C2^2 | 128,1362 |
(C23×C4).433C22 = C23.535C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).433C2^2 | 128,1367 |
(C23×C4).434C22 = C24.374C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).434C2^2 | 128,1370 |
(C23×C4).435C22 = C23.556C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).435C2^2 | 128,1388 |
(C23×C4).436C22 = C23.559C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).436C2^2 | 128,1391 |
(C23×C4).437C22 = C24.377C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).437C2^2 | 128,1393 |
(C23×C4).438C22 = C24.378C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).438C2^2 | 128,1395 |
(C23×C4).439C22 = C24.379C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).439C2^2 | 128,1397 |
(C23×C4).440C22 = C23.567C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).440C2^2 | 128,1399 |
(C23×C4).441C22 = C23.571C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).441C2^2 | 128,1403 |
(C23×C4).442C22 = C23.572C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).442C2^2 | 128,1404 |
(C23×C4).443C22 = C23.573C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).443C2^2 | 128,1405 |
(C23×C4).444C22 = C23.574C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).444C2^2 | 128,1406 |
(C23×C4).445C22 = C24.384C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).445C2^2 | 128,1407 |
(C23×C4).446C22 = C23.576C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).446C2^2 | 128,1408 |
(C23×C4).447C22 = C24.385C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).447C2^2 | 128,1409 |
(C23×C4).448C22 = C23.580C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).448C2^2 | 128,1412 |
(C23×C4).449C22 = C23.581C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).449C2^2 | 128,1413 |
(C23×C4).450C22 = C24.389C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).450C2^2 | 128,1414 |
(C23×C4).451C22 = C23.583C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).451C2^2 | 128,1415 |
(C23×C4).452C22 = C24.393C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).452C2^2 | 128,1418 |
(C23×C4).453C22 = C24.394C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).453C2^2 | 128,1419 |
(C23×C4).454C22 = C23.589C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).454C2^2 | 128,1421 |
(C23×C4).455C22 = C23.590C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).455C2^2 | 128,1422 |
(C23×C4).456C22 = C23.592C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).456C2^2 | 128,1424 |
(C23×C4).457C22 = C24.401C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).457C2^2 | 128,1426 |
(C23×C4).458C22 = C23.595C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).458C2^2 | 128,1427 |
(C23×C4).459C22 = C24.403C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).459C2^2 | 128,1428 |
(C23×C4).460C22 = C24.405C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).460C2^2 | 128,1430 |
(C23×C4).461C22 = C24.406C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).461C2^2 | 128,1431 |
(C23×C4).462C22 = C23.600C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).462C2^2 | 128,1432 |
(C23×C4).463C22 = C23.602C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).463C2^2 | 128,1434 |
(C23×C4).464C22 = C24.408C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).464C2^2 | 128,1436 |
(C23×C4).465C22 = C23.605C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).465C2^2 | 128,1437 |
(C23×C4).466C22 = C23.607C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).466C2^2 | 128,1439 |
(C23×C4).467C22 = C23.608C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).467C2^2 | 128,1440 |
(C23×C4).468C22 = C23.611C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).468C2^2 | 128,1443 |
(C23×C4).469C22 = C24.413C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).469C2^2 | 128,1446 |
(C23×C4).470C22 = C23.615C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).470C2^2 | 128,1447 |
(C23×C4).471C22 = C23.617C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).471C2^2 | 128,1449 |
(C23×C4).472C22 = C23.620C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).472C2^2 | 128,1452 |
(C23×C4).473C22 = C23.622C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).473C2^2 | 128,1454 |
(C23×C4).474C22 = C24.418C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).474C2^2 | 128,1455 |
(C23×C4).475C22 = C24.420C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).475C2^2 | 128,1460 |
(C23×C4).476C22 = C24.421C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).476C2^2 | 128,1461 |
(C23×C4).477C22 = C23.630C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).477C2^2 | 128,1462 |
(C23×C4).478C22 = C23.632C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).478C2^2 | 128,1464 |
(C23×C4).479C22 = C23.637C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).479C2^2 | 128,1469 |
(C23×C4).480C22 = C24.426C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).480C2^2 | 128,1470 |
(C23×C4).481C22 = C24.427C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).481C2^2 | 128,1471 |
(C23×C4).482C22 = C23.640C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).482C2^2 | 128,1472 |
(C23×C4).483C22 = C23.641C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).483C2^2 | 128,1473 |
(C23×C4).484C22 = C24.428C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).484C2^2 | 128,1474 |
(C23×C4).485C22 = C24.430C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).485C2^2 | 128,1476 |
(C23×C4).486C22 = C23.645C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).486C2^2 | 128,1477 |
(C23×C4).487C22 = C23.647C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).487C2^2 | 128,1479 |
(C23×C4).488C22 = C24.435C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).488C2^2 | 128,1482 |
(C23×C4).489C22 = C23.656C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).489C2^2 | 128,1488 |
(C23×C4).490C22 = C23.668C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).490C2^2 | 128,1500 |
(C23×C4).491C22 = C24.445C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).491C2^2 | 128,1502 |
(C23×C4).492C22 = C23.679C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).492C2^2 | 128,1511 |
(C23×C4).493C22 = C23.681C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).493C2^2 | 128,1513 |
(C23×C4).494C22 = C24.450C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).494C2^2 | 128,1516 |
(C23×C4).495C22 = C23.686C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).495C2^2 | 128,1518 |
(C23×C4).496C22 = C23.687C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).496C2^2 | 128,1519 |
(C23×C4).497C22 = C23.688C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).497C2^2 | 128,1520 |
(C23×C4).498C22 = C24.459C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).498C2^2 | 128,1545 |
(C23×C4).499C22 = C23.714C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).499C2^2 | 128,1546 |
(C23×C4).500C22 = C23.715C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).500C2^2 | 128,1547 |
(C23×C4).501C22 = C23.716C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).501C2^2 | 128,1548 |
(C23×C4).502C22 = C24.462C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).502C2^2 | 128,1549 |
(C23×C4).503C22 = C23.741C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).503C2^2 | 128,1573 |
(C23×C4).504C22 = M4(2)○2M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).504C2^2 | 128,1605 |
(C23×C4).505C22 = C2×(C22×C8)⋊C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).505C2^2 | 128,1610 |
(C23×C4).506C22 = C24.73(C2×C4) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).506C2^2 | 128,1611 |
(C23×C4).507C22 = D4○(C22⋊C8) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).507C2^2 | 128,1612 |
(C23×C4).508C22 = C2×C23.C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).508C2^2 | 128,1614 |
(C23×C4).509C22 = C22×C4.D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).509C2^2 | 128,1617 |
(C23×C4).510C22 = C22×C4.10D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).510C2^2 | 128,1618 |
(C23×C4).511C22 = C2×M4(2).8C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).511C2^2 | 128,1619 |
(C23×C4).512C22 = C2×C23.37D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).512C2^2 | 128,1625 |
(C23×C4).513C22 = C2×C23.38D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).513C2^2 | 128,1626 |
(C23×C4).514C22 = C2×C23.36D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).514C2^2 | 128,1627 |
(C23×C4).515C22 = C24.98D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).515C2^2 | 128,1628 |
(C23×C4).516C22 = C2×C42⋊C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).516C2^2 | 128,1632 |
(C23×C4).517C22 = C42.257C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).517C2^2 | 128,1637 |
(C23×C4).518C22 = C2×M4(2)⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).518C2^2 | 128,1642 |
(C23×C4).519C22 = C24.100D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).519C2^2 | 128,1643 |
(C23×C4).520C22 = C2×M4(2).C4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).520C2^2 | 128,1647 |
(C23×C4).521C22 = C2×C42.7C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).521C2^2 | 128,1651 |
(C23×C4).522C22 = C42.259C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).522C2^2 | 128,1653 |
(C23×C4).523C22 = C42.262C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).523C2^2 | 128,1656 |
(C23×C4).524C22 = C2×C8⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).524C2^2 | 128,1659 |
(C23×C4).525C22 = C2×C8⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).525C2^2 | 128,1660 |
(C23×C4).526C22 = C42.265C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).526C2^2 | 128,1662 |
(C23×C4).527C22 = M4(2)⋊22D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).527C2^2 | 128,1665 |
(C23×C4).528C22 = D4×M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).528C2^2 | 128,1666 |
(C23×C4).529C22 = C23⋊3M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).529C2^2 | 128,1705 |
(C23×C4).530C22 = D4⋊7M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).530C2^2 | 128,1706 |
(C23×C4).531C22 = C42.693C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).531C2^2 | 128,1707 |
(C23×C4).532C22 = C42.297C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).532C2^2 | 128,1708 |
(C23×C4).533C22 = C42.298C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).533C2^2 | 128,1709 |
(C23×C4).534C22 = C42.299C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).534C2^2 | 128,1710 |
(C23×C4).535C22 = C2×C22⋊D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).535C2^2 | 128,1728 |
(C23×C4).536C22 = C2×C22⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).536C2^2 | 128,1729 |
(C23×C4).537C22 = C2×Q8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).537C2^2 | 128,1730 |
(C23×C4).538C22 = C2×C22⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).538C2^2 | 128,1731 |
(C23×C4).539C22 = C2×D4⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).539C2^2 | 128,1732 |
(C23×C4).540C22 = C2×D4.7D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).540C2^2 | 128,1733 |
(C23×C4).541C22 = C24.103D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).541C2^2 | 128,1734 |
(C23×C4).542C22 = C24.177D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).542C2^2 | 128,1735 |
(C23×C4).543C22 = C24.178D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).543C2^2 | 128,1736 |
(C23×C4).544C22 = C24.104D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).544C2^2 | 128,1737 |
(C23×C4).545C22 = C24.105D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).545C2^2 | 128,1738 |
(C23×C4).546C22 = C24.106D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).546C2^2 | 128,1739 |
(C23×C4).547C22 = C2×C8⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).547C2^2 | 128,1783 |
(C23×C4).548C22 = C2×C8⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).548C2^2 | 128,1784 |
(C23×C4).549C22 = C2×C8.D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).549C2^2 | 128,1785 |
(C23×C4).550C22 = C24.110D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).550C2^2 | 128,1786 |
(C23×C4).551C22 = M4(2)⋊14D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).551C2^2 | 128,1787 |
(C23×C4).552C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).552C2^2 | 128,1788 |
(C23×C4).553C22 = C2×C22.D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).553C2^2 | 128,1817 |
(C23×C4).554C22 = C2×C23.47D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).554C2^2 | 128,1818 |
(C23×C4).555C22 = C2×C23.19D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).555C2^2 | 128,1819 |
(C23×C4).556C22 = C2×C23.20D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).556C2^2 | 128,1820 |
(C23×C4).557C22 = C2×C23.46D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).557C2^2 | 128,1821 |
(C23×C4).558C22 = C2×C23.48D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).558C2^2 | 128,1822 |
(C23×C4).559C22 = C24.115D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).559C2^2 | 128,1823 |
(C23×C4).560C22 = C24.183D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).560C2^2 | 128,1824 |
(C23×C4).561C22 = C24.116D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).561C2^2 | 128,1825 |
(C23×C4).562C22 = C24.117D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).562C2^2 | 128,1826 |
(C23×C4).563C22 = C24.118D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).563C2^2 | 128,1827 |
(C23×C4).564C22 = C23⋊3D8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).564C2^2 | 128,1918 |
(C23×C4).565C22 = C23⋊4SD16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).565C2^2 | 128,1919 |
(C23×C4).566C22 = C24.121D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).566C2^2 | 128,1920 |
(C23×C4).567C22 = C23⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).567C2^2 | 128,1921 |
(C23×C4).568C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).568C2^2 | 128,1922 |
(C23×C4).569C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).569C2^2 | 128,1923 |
(C23×C4).570C22 = C24.125D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).570C2^2 | 128,1924 |
(C23×C4).571C22 = C24.126D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).571C2^2 | 128,1925 |
(C23×C4).572C22 = C24.127D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).572C2^2 | 128,1926 |
(C23×C4).573C22 = C24.128D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).573C2^2 | 128,1927 |
(C23×C4).574C22 = C24.129D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).574C2^2 | 128,1928 |
(C23×C4).575C22 = C24.130D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).575C2^2 | 128,1929 |
(C23×C4).576C22 = C2×C23.32C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).576C2^2 | 128,2158 |
(C23×C4).577C22 = C22.14C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).577C2^2 | 128,2160 |
(C23×C4).578C22 = C22×C22⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).578C2^2 | 128,2165 |
(C23×C4).579C22 = C22×C42.C2 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).579C2^2 | 128,2169 |
(C23×C4).580C22 = C2×C23.36C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).580C2^2 | 128,2171 |
(C23×C4).581C22 = C2×C22.26C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).581C2^2 | 128,2174 |
(C23×C4).582C22 = C2×C23.38C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).582C2^2 | 128,2179 |
(C23×C4).583C22 = C2×C22.31C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).583C2^2 | 128,2180 |
(C23×C4).584C22 = C2×C22.33C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).584C2^2 | 128,2183 |
(C23×C4).585C22 = C2×C22.34C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).585C2^2 | 128,2184 |
(C23×C4).586C22 = C2×C22.35C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).586C2^2 | 128,2185 |
(C23×C4).587C22 = C2×C22.36C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).587C2^2 | 128,2186 |
(C23×C4).588C22 = C22.44C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).588C2^2 | 128,2187 |
(C23×C4).589C22 = C2×C23⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).589C2^2 | 128,2188 |
(C23×C4).590C22 = C2×C23.41C23 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).590C2^2 | 128,2189 |
(C23×C4).591C22 = C22.47C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).591C2^2 | 128,2190 |
(C23×C4).592C22 = C22.49C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).592C2^2 | 128,2192 |
(C23×C4).593C22 = C2×D4⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).593C2^2 | 128,2196 |
(C23×C4).594C22 = C2×Q8⋊5D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).594C2^2 | 128,2197 |
(C23×C4).595C22 = C2×D4×Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).595C2^2 | 128,2198 |
(C23×C4).596C22 = C2×Q8⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).596C2^2 | 128,2199 |
(C23×C4).597C22 = C2×C22.46C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).597C2^2 | 128,2202 |
(C23×C4).598C22 = C2×C22.47C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).598C2^2 | 128,2203 |
(C23×C4).599C22 = C2×D4⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).599C2^2 | 128,2204 |
(C23×C4).600C22 = C2×C22.49C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).600C2^2 | 128,2205 |
(C23×C4).601C22 = C2×C22.50C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).601C2^2 | 128,2206 |
(C23×C4).602C22 = C22.64C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).602C2^2 | 128,2207 |
(C23×C4).603C22 = C22.75C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).603C2^2 | 128,2218 |
(C23×C4).604C22 = C22.76C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).604C2^2 | 128,2219 |
(C23×C4).605C22 = C22.78C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).605C2^2 | 128,2221 |
(C23×C4).606C22 = C22.80C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).606C2^2 | 128,2223 |
(C23×C4).607C22 = C22.81C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).607C2^2 | 128,2224 |
(C23×C4).608C22 = C22.82C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).608C2^2 | 128,2225 |
(C23×C4).609C22 = C22.83C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).609C2^2 | 128,2226 |
(C23×C4).610C22 = C22.84C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).610C2^2 | 128,2227 |
(C23×C4).611C22 = C22.90C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).611C2^2 | 128,2233 |
(C23×C4).612C22 = C22.95C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).612C2^2 | 128,2238 |
(C23×C4).613C22 = C23.144C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).613C2^2 | 128,2252 |
(C23×C4).614C22 = C2×C22.56C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).614C2^2 | 128,2259 |
(C23×C4).615C22 = C2×C22.57C24 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).615C2^2 | 128,2260 |
(C23×C4).616C22 = C22.124C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).616C2^2 | 128,2267 |
(C23×C4).617C22 = C22.125C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).617C2^2 | 128,2268 |
(C23×C4).618C22 = C22.127C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).618C2^2 | 128,2270 |
(C23×C4).619C22 = C22.128C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).619C2^2 | 128,2271 |
(C23×C4).620C22 = C22.130C25 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).620C2^2 | 128,2273 |
(C23×C4).621C22 = C2×Q8○M4(2) | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).621C2^2 | 128,2304 |
(C23×C4).622C22 = C22×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).622C2^2 | 128,2310 |
(C23×C4).623C22 = C22×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).623C2^2 | 128,2311 |
(C23×C4).624C22 = C2×D8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).624C2^2 | 128,2312 |
(C23×C4).625C22 = C22×2- 1+4 | φ: C22/C1 → C22 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).625C2^2 | 128,2324 |
(C23×C4).626C22 = C24.626C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).626C2^2 | 128,168 |
(C23×C4).627C22 = C23⋊2C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).627C2^2 | 128,169 |
(C23×C4).628C22 = C4×C22⋊C8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).628C2^2 | 128,480 |
(C23×C4).629C22 = C42.378D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).629C2^2 | 128,481 |
(C23×C4).630C22 = C8×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).630C2^2 | 128,483 |
(C23×C4).631C22 = C23.36C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).631C2^2 | 128,484 |
(C23×C4).632C22 = C24⋊3C8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).632C2^2 | 128,511 |
(C23×C4).633C22 = C42.425D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).633C2^2 | 128,529 |
(C23×C4).634C22 = C23.32M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).634C2^2 | 128,549 |
(C23×C4).635C22 = C23.21M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).635C2^2 | 128,582 |
(C23×C4).636C22 = C22×C2.C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).636C2^2 | 128,998 |
(C23×C4).637C22 = C2×C42⋊4C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).637C2^2 | 128,999 |
(C23×C4).638C22 = C2×C4×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).638C2^2 | 128,1000 |
(C23×C4).639C22 = C2×C4×C4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).639C2^2 | 128,1001 |
(C23×C4).640C22 = C4×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).640C2^2 | 128,1002 |
(C23×C4).641C22 = D4×C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).641C2^2 | 128,1003 |
(C23×C4).642C22 = C2×C23.34D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).642C2^2 | 128,1011 |
(C23×C4).643C22 = C25.85C22 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).643C2^2 | 128,1012 |
(C23×C4).644C22 = C2×C42⋊5C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).644C2^2 | 128,1014 |
(C23×C4).645C22 = C23.165C24 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).645C2^2 | 128,1015 |
(C23×C4).646C22 = C42⋊42D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).646C2^2 | 128,1022 |
(C23×C4).647C22 = C23.178C24 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).647C2^2 | 128,1028 |
(C23×C4).648C22 = C4×C22.D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).648C2^2 | 128,1033 |
(C23×C4).649C22 = C24.166D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).649C2^2 | 128,1581 |
(C23×C4).650C22 = C42⋊46D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).650C2^2 | 128,1582 |
(C23×C4).651C22 = C42.439D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).651C2^2 | 128,1583 |
(C23×C4).652C22 = C42⋊43D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).652C2^2 | 128,1584 |
(C23×C4).653C22 = C23.753C24 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).653C2^2 | 128,1585 |
(C23×C4).654C22 = C24.598C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).654C2^2 | 128,1586 |
(C23×C4).655C22 = C24.599C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).655C2^2 | 128,1587 |
(C23×C4).656C22 = C22×C22⋊C8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).656C2^2 | 128,1608 |
(C23×C4).657C22 = C2×C42.12C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).657C2^2 | 128,1649 |
(C23×C4).658C22 = C2×C42.6C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).658C2^2 | 128,1650 |
(C23×C4).659C22 = D4×C2×C8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).659C2^2 | 128,1658 |
(C23×C4).660C22 = C23×C4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).660C2^2 | 128,2152 |
(C23×C4).661C22 = C2×C4×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).661C2^2 | 128,2156 |
(C23×C4).662C22 = C22×C4.4D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).662C2^2 | 128,2168 |
(C23×C4).663C22 = C22×C42⋊2C2 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).663C2^2 | 128,2170 |
(C23×C4).664C22 = C23.28C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).664C2^2 | 128,460 |
(C23×C4).665C22 = C23.29C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).665C2^2 | 128,461 |
(C23×C4).666C22 = C2×C42⋊6C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).666C2^2 | 128,464 |
(C23×C4).667C22 = C2×C22.4Q16 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).667C2^2 | 128,466 |
(C23×C4).668C22 = C24.132D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).668C2^2 | 128,467 |
(C23×C4).669C22 = C2×C4.C42 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).669C2^2 | 128,469 |
(C23×C4).670C22 = C24.133D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).670C2^2 | 128,539 |
(C23×C4).671C22 = C23.22D8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).671C2^2 | 128,540 |
(C23×C4).672C22 = C24.19Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).672C2^2 | 128,542 |
(C23×C4).673C22 = C24.135D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).673C2^2 | 128,624 |
(C23×C4).674C22 = C23.23D8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).674C2^2 | 128,625 |
(C23×C4).675C22 = (C2×C4)≀C2 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).675C2^2 | 128,628 |
(C23×C4).676C22 = C2×C23.7Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).676C2^2 | 128,1010 |
(C23×C4).677C22 = C2×C42⋊9C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).677C2^2 | 128,1016 |
(C23×C4).678C22 = C23.167C24 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).678C2^2 | 128,1017 |
(C23×C4).679C22 = C4×C4⋊D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).679C2^2 | 128,1032 |
(C23×C4).680C22 = C4×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).680C2^2 | 128,1034 |
(C23×C4).681C22 = C24⋊13D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).681C2^2 | 128,1579 |
(C23×C4).682C22 = C24⋊8Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).682C2^2 | 128,1580 |
(C23×C4).683C22 = C42⋊47D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).683C2^2 | 128,1588 |
(C23×C4).684C22 = C42.440D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).684C2^2 | 128,1589 |
(C23×C4).685C22 = C2×C4×M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).685C2^2 | 128,1603 |
(C23×C4).686C22 = C2×C8○2M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).686C2^2 | 128,1604 |
(C23×C4).687C22 = C2×C24.4C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).687C2^2 | 128,1609 |
(C23×C4).688C22 = C22×D4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).688C2^2 | 128,1622 |
(C23×C4).689C22 = C22×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).689C2^2 | 128,1623 |
(C23×C4).690C22 = C2×C23.24D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).690C2^2 | 128,1624 |
(C23×C4).691C22 = C22×C4≀C2 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).691C2^2 | 128,1631 |
(C23×C4).692C22 = C2×C4⋊M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).692C2^2 | 128,1635 |
(C23×C4).693C22 = C2×C42.6C22 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).693C2^2 | 128,1636 |
(C23×C4).694C22 = C22×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).694C2^2 | 128,1639 |
(C23×C4).695C22 = C22×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).695C2^2 | 128,1640 |
(C23×C4).696C22 = C2×C23.25D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).696C2^2 | 128,1641 |
(C23×C4).697C22 = C22×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).697C2^2 | 128,1646 |
(C23×C4).698C22 = C42.677C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).698C2^2 | 128,1652 |
(C23×C4).699C22 = C42.264C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).699C2^2 | 128,1661 |
(C23×C4).700C22 = C2×C8⋊8D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).700C2^2 | 128,1779 |
(C23×C4).701C22 = C2×C8⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).701C2^2 | 128,1780 |
(C23×C4).702C22 = C2×C8.18D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).702C2^2 | 128,1781 |
(C23×C4).703C22 = C24.144D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).703C2^2 | 128,1782 |
(C23×C4).704C22 = C22×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).704C2^2 | 128,2153 |
(C23×C4).705C22 = C22×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).705C2^2 | 128,2172 |
(C23×C4).706C22 = C22×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).706C2^2 | 128,2173 |
(C23×C4).707C22 = C2×C23.37C23 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).707C2^2 | 128,2175 |
(C23×C4).708C22 = C22.33C25 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).708C2^2 | 128,2176 |
(C23×C4).709C22 = C23×M4(2) | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).709C2^2 | 128,2302 |
(C23×C4).710C22 = C22×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).710C2^2 | 128,2303 |
(C23×C4).711C22 = C23×D8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).711C2^2 | 128,2306 |
(C23×C4).712C22 = C23×SD16 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).712C2^2 | 128,2307 |
(C23×C4).713C22 = C23×Q16 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).713C2^2 | 128,2308 |
(C23×C4).714C22 = C22×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).714C2^2 | 128,2309 |
(C23×C4).715C22 = Q8×C24 | φ: C22/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).715C2^2 | 128,2321 |
(C23×C4).716C22 = C4×C2.C42 | central extension (φ=1) | 128 | | (C2^3xC4).716C2^2 | 128,164 |
(C23×C4).717C22 = C2×C22.7C42 | central extension (φ=1) | 128 | | (C2^3xC4).717C2^2 | 128,459 |
(C23×C4).718C22 = C22×C8⋊C4 | central extension (φ=1) | 128 | | (C2^3xC4).718C2^2 | 128,1602 |
(C23×C4).719C22 = C22×C4⋊C8 | central extension (φ=1) | 128 | | (C2^3xC4).719C2^2 | 128,1634 |
(C23×C4).720C22 = Q8×C22×C4 | central extension (φ=1) | 128 | | (C2^3xC4).720C2^2 | 128,2155 |